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Process of determining the order of nucleotides in a DNA molecule.
Uses chain-terminating nucleotides to block extension at particular bases.

Watson et al., Molecular Biology of the Gene 7th Edition, Chapter 7.

Sanger sequencing



Sanger sequencing

fra
gm

en
t l

en
gt

h

Produces fragment of around 600-1000 bp.

Very low error rate.

Watson et al., Molecular Biology of the Gene 7th Edition, Chapter 7.



Shotgun sequencing: DNA is 
fragmented into small pieces that are 
cloned into plasmids, amplified and 
sequenced.

The resulting sequences are assembled 
based on overlapping segments.

- A major challenge is the repetitive 
nature of eukaryotic genomes.

Sanger sequencing

Shendure et al., DNA sequencing at 40..., Nature (2017).
 doi:10.1038/nature24286



Sequence the ends of a large fragment.

Sequences matching the two short reads are now known to come from the 
same molecule and to be in close proximity.

Paired-end sequencing



Applications of Sanger sequencing
Widely used for de novo sequencing of complete genomes.

Remains the gold standard.
- Used for validation.
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Next generation sequencing
Human Genome -> 15 years to complete (published in 2004).

      -> 3 billion US dollars.

Development of new sequencing technologies with increased throughput. 
Known interchangeably as:

● next generation (NGS)
● second generation
● massively parallel
● high-throughput



Next generation sequencing technologies

Read length Reads / run Run time Error rate Cost per Gb

Pyrosequencing 400-700 bp 1 M 10-23 hours <1% US$19,500

Sequencing by 
ligation

50-75 bp 0.7-1.4 B 6-10 days <0.1% US$70-130

Sequencing by 
synthesis

36-150 bp 1.5-3 B 1-6 days <0.1% US$7-50



Illumina sequencing
Library preparation (Nextera).

● Tagmentation: a transposase randomly 
inserts into the DNA and ligates an adaptor.

● Barcodes and terminal sequences are 
added via PCR.

● Library is amplified and cleaned up.

https://emea.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf

https://emea.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf


Illumina sequencing
Library preparation (Nextera).

● Tagmentation: a transposase randomly 
inserts into the DNA and ligates an adaptor.

● Barcodes and terminal sequences are 
added via PCR.

● Library is amplified and cleaned up.

The index attached to each fragment is a barcode used to 
identify the sample: multiplexing.

https://emea.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
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Illumina sequencing

https://www.illumina.com/documents/products/datasheets/datasheet_cbot.pdf

flowcell
glass slide with 8 lanes

surface coated by 
millions of terminal 

sequences

bridge amplification

https://www.illumina.com/documents/products/datasheets/datasheet_cbot.pdf


Illumina sequencing

https://www.illumina.com/documents/products/datasheets/datasheet_cbot.pdf

surface coated by 
millions of terminal 

sequences

bridge amplification cluster generation

flowcell
glass slide with 8 lanes

https://www.illumina.com/documents/products/datasheets/datasheet_cbot.pdf


Illumina sequencing

Each nucleotide is tagged with a different fluorophore.
Nucleotides are reversibly blocked => only one nucleotide can be added per cycle.

https://youtu.be/fCd6B5HRaZ8

https://youtu.be/fCd6B5HRaZ8


Illumina sequencing
Each cycle the fluorescence is recorded across the 
flow cell, separately for each nucleotide: TIFF files.

Each image is analysed to identify clusters and 
quantify the intensity level.

A base calling algorithm uses cluster intensities and 
noise estimates to output a base for each cycle in 
each cluster, with an associated quality score: BCL 
files.



Applications of NGS
Resequencing: allows cataloguing variation among 
individuals of the same species.

Clinical applications: prenatal testing to identify 
trisomies.

As a molecular counter: RNA expression, transcription 
factor binding, chromatin accessibility.

Metagenome sequencing: environmental or organism 
microbiomes.



Third generation sequencing

https://www.pacb.com

https://nanoporetech.com/

MinION

PromethION



SMRT-sequencing

https://www.youtube.com/watch?v=E9-Rm5AoZGwhttps://www.youtube.com/watch?time_continue=29&v=WMZmG00uhwU

● Long reads: tens to hundreds of kb.
● High error rates: ~13-15%.
● PCR-free.

Nanopore sequencing
Single-Molecule Real Time

Error correction (1.7%)

https://www.youtube.com/watch?v=E9-Rm5AoZGw
https://www.youtube.com/watch?time_continue=29&v=WMZmG00uhwU
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Experimental workflow

extract total RNA
- organic solvents
- solid-phase extraction

select RNA(tissue dissociation) 
cell lysis

assess purity and 
degradation rate.

ribo-depletion

polyA selection

cDNA 
generation

library 
prep

PCR 
amplification sequencing

>80% is rRNA
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RNA needs to be reverse-transcribed into cDNA which can then be sequenced 
with standard technologies.

First-strand synthesis:

cDNA generation

oligo-dT priming random hexamer priming



RNA needs to be reverse-transcribed into cDNA which can then be sequenced 
with standard technologies.

Second-strand synthesis:

cDNA generation

RNA displacement oligo-dG template-switching
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Adapters are added either in the 
primers used for RT or are 
ligated after cDNA synthesis.



Experimental workflow

extract total RNA
- organic solvents
- solid-phase extraction

select RNA(tissue dissociation) 
cell lysis

assess purity and 
degradation rate.

ribo-depletion

polyA selection

cDNA 
generation

library 
prep

PCR 
amplification

fragmentation

sequencing

Adapters are added either in the 
primers used for RT or are 
ligated after cDNA synthesis.

major source of bias!



PCR amplification of the library introduces several biases.

Molecules with particular characteristics amplify with different efficiencies.
● Length.
● GC content.
● Secondary structure.

Plus, PCR has a stochastic component that affects more low-abundance species.

PCR amplification bias



PCR duplicates are normally defined as any group of reads with identical 5’ 
mapping position. 

Assumption: when DNA is randomly fragmented the probability of capturing two 
molecules starting at the same position is very low. 

Only one alignment is retained.
MarkDuplicates from Picard tools.

This doesn’t hold for RNA-seq or when fragmentation is not random (restriction 
enzymes).

PCR amplification bias

https://broadinstitute.github.io/picard/command-line-overview.html#MarkDuplicates

https://broadinstitute.github.io/picard/command-line-overview.html#MarkDuplicates


To mitigate PCR biases, each molecule 
present in the initial sample needs to be made 
unique.

By adding a random barcode = unique 
molecular identifier (UMI).

Used for counting accurately.

Full-transcript coverage is lost. 
Only one end of the RNA is read.

Unique Molecular Identifiers (UMIs)



To mitigate PCR biases, each molecule 
present in the initial sample needs to be made 
unique.

By adding a random barcode = unique 
molecular identifier (UMI).

Unique Molecular Identifiers (UMIs)

Kivioja et al., Counting absolute numbers of molecules using unique molecular 
identifiers, Nature Methods (2012). doi:10.1038/nmeth.1778





Ximena Ibarra-Soria
Cancer Research UK

High-throughput sequencing 
experiments

Anna Cuomo
EBI & University of Cambridge



High-throughput sequencing experiments



Experimental design
What is the question to answer.
● Sources of variation.

○ Biological: gender, age, ethnicity, genetic background…
○ Technical: sample processing date, reagent’s batch, time of sample collection...

● To estimate variation we need replicates.

control treatment
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Experimental design

What is the question to answer.
● Sources of variation.

○ Biological: gender, age, ethnicity, genetic background…
○ Technical: sample processing date, reagent’s batch, time of sample collection...

● To estimate variation we need replicates.
● Power calculations.

○ Number of replicates needed to observe an effect.

● Type of information needed.
○ Sequencing platform.
○ Sequencing depth.
○ Single vs paired-end.

control treatment

C T



Experimental design

Adapted from Hicks et al., On the widespread and critical impact..., BioRxiv, version from December 27, 2015 - 06:15 
doi: https://doi.org/10.1101/025528



Experimental design

Adapted from Hicks et al., On the widespread and critical impact..., BioRxiv, version from December 27, 2015 - 06:15 
doi: https://doi.org/10.1101/025528



High-throughput sequencing experiments

data pre-processing



Sequencing data: FASTQ files
BCL files -> FASTQ files (bcl2fastq conversion software (Illumina)).

Performs demultiplexing also.

FASTQ format: stores the nucleotide sequence with its associated quality.

@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

header
sequence

quality



Sequencing data: FASTQ files
BCL files -> FASTQ files (bcl2fastq conversion software (Illumina)).

Performs demultiplexing also.

FASTQ format: stores the nucleotide sequence with its associated quality.

@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

header
sequence

quality

@K00252:342:HWCHVBBXX:6:1101:19715:1859 1:N:0:TAAGGCGA+TCTTACGC

flowcell IDinstrument tile y coord index sequence
run ID lane x coord pair



Sequencing data: FASTQ files
BCL files -> FASTQ files (bcl2fastq conversion software (Illumina)).

Performs demultiplexing also.

FASTQ format: stores the nucleotide sequence with its associated quality.

Quality scores indicate the probability (p) of the base call being wrong.

They are encoded in ASCII, by adding 64 to the quality value. 

@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

header
sequence

quality

Q = -10 log10 p Phred quality score



Sequencing reads
Sequencing reads can have several quality issues.

● Adaptor contamination.
● Systematic failure at specific cycles.
● Substantially lower quality at the end of the read.

A sequencing library can also have quality issues that can be spotted from the 
sequencing data.

● Low complexity resulting in high number of PCR duplicates.



Sequencing reads
Initial QC is a good sanity check about data quality.

FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] reports on 
basic quality statistics.

Consider trimming the reads to remove the low-quality portion.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Sequencing reads
Initial QC is a good sanity check about data quality.
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Sequencing reads
Initial QC is a good sanity check about data quality.

FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] reports on 
basic quality statistics.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Sequencing reads - RNA-seq
RNA-seq data has a few particular characteristics not shared with DNA-seq data.

Random hexamer priming introduces biased nucleotide composition in the first ~13 nucleotides of 
the reads.

Hansen et al., Biases in Illumina transcriptome sequencing caused by random hexamer priming, Nucleic Acids Res (2010)
doi: https://doi.org/10.1093/nar/gkq224



Alignment to a reference genome
Objective: find the true location in the genome where a sequencing read came 
from.

Challenges:

● Millions of short reads.
● Large search space.

- Human haploid genome: 3,234.83 Mb
- Mouse haploid genome:  2,653.99 Mb

● Matching needs to allow errors.



Alignment to a reference genome

reference

sequencing 
reads

should be able to handle 
mismatching bases and gaps

- PCR and sequencing errors
- genetic variation



Alignment to a reference genome
To address the large input size problem (millions of reads and a large reference):

● Filtering: quickly exclude large reference regions where matches cannot be 
found.
○ Take a substring of the read (seed) and find perfect matches.

● Indexing: involves pre-processing the reference to speed-up matching 
without scanning the whole reference.
○ Hash tables.
○ Suffix trees.
○ FM indices with Burrows-Wheeler transform.

Reinert et al., Alignment of Next-Generation Sequencing Reads, Annu. Rev. Genomics Hum. Genet. (2015).
doi: https://doi.org/110.1146/annurev-genom-090413-025358



Alignment to a reference genome
Each seed has a list of candidate matches in the genome.

The region around each is examined to determine if a high-scoring alignment 
exists.

Mapping quality: measures the confidence of the alignment by considering all 
possible locations discovered.

Reinert et al., Alignment of Next-Generation Sequencing Reads, Annu. Rev. Genomics Hum. Genet. (2015).
doi: https://doi.org/110.1146/annurev-genom-090413-025358

pcor = probability alignment is correct

Q = -10 log10 (1-pcor)

Q = 30 1 in 1000 chance the alignment is wrong.



Alignment to a reference genome
The biggest problem for aligners comes from the high repeat content of most 
eukaryotic genomes.

multi-mapping reads: reads that align equally well at two or more loci.

Reinert et al., Alignment of Next-Generation Sequencing Reads, Annu. Rev. Genomics Hum. Genet. (2015).
doi: https://doi.org/110.1146/annurev-genom-090413-025358



Alignment to a reference genome
The biggest problem for aligners comes from the high repeat content of most 
eukaryotic genomes.

multi-mapping reads: reads that align equally well at two or more loci.
paired-end reads help reducing multimappers.

Reinert et al., Alignment of Next-Generation Sequencing Reads, Annu. Rev. Genomics Hum. Genet. (2015).
doi: https://doi.org/110.1146/annurev-genom-090413-025358



Alignment to a reference genome
The biggest problem for aligners comes from the high repeat content of most 
eukaryotic genomes.

multi-mapping reads: reads that align equally well at two or more loci.
paired-end reads help reducing multimappers.

When the sample comes from a genome substantially different to the reference, 
the alignment becomes less accurate and there is information loss.

Relaxing the stringency of the alignments might be necessary.
If known, consider imputing the variable positions.

Reinert et al., Alignment of Next-Generation Sequencing Reads, Annu. Rev. Genomics Hum. Genet. (2015).
doi: https://doi.org/110.1146/annurev-genom-090413-025358

https://www.sanger.ac.uk/science/
data/mouse-genomes-project



NGS aligners
There are dozens of different aligners with different

- indexing methods.
- scoring criteria.
- memory requirements.
- speed. 
- ...

https://www.ebi.ac.uk/~nf/hts_mappers/

https://www.ebi.ac.uk/~nf/hts_mappers/


NGS aligners
Hash tables.

GSNAP, MAQ, RMAP, subread*.

Burrows-Wheeler Transform (BWT).
Bowtie, BWA, SOAP2.

There is no best aligner. 
Each is suited to different types of data.

Adjust the parameters to reflect this.
Keep it consistent.

https://www.ebi.ac.uk/~nf/hts_mappers/

* Can be used from within R with the Rsubread package.
https://bioconductor.org/packages/release/bioc/html/Rsubread.html

https://www.ebi.ac.uk/~nf/hts_mappers/
https://bioconductor.org/packages/release/bioc/html/Rsubread.html


Alignment files: SAM/BAM/CRAM
The Sequence Alignment/Map (SAM) format is a tab-delimited text format to 
store genomic alignments. Contains two sections.

Header section:
Header lines start with @.
Information is encoded by TAG:VALUE entries.

@HD header line. Version, sorting/grouping of alignments.
@SQ reference sequence dictionary. Sequence name and length. Genome

assembly, species...
@RG read group. Barcode identifying the sample. Sequencing centre, date, 

platform, median insert size...
@PG program. Program name, version, command line.
@CO comment line. 



The Sequence Alignment/Map (SAM) format is a tab-delimited text format to 
store genomic alignments. Contains two sections.

Header section: information is encoded by TAG:VALUE entries.

Alignment files: SAM/BAM/CRAM

https://samtools.github.io/hts-specs/SAMv1.pdf

@HD VN:1.5 SO:coordinate
@SQ SN:1 LN:195471971
@SQ SN:10 LN:130694993
@SQ SN:11 LN:122082543
@SQ SN:12 LN:120129022
...
@SQ SN:JH584292.1 LN:14945
@SQ SN:JH584295.1 LN:1976
@RG ID:1 PL:illumina PU:1 LB:do9029 SM:do9029 CN:CRI
@PG ID:bwa-E39E2AF PN:bwa VN:0.7.12-r1039 CL:bwa samse mm10.fa - wt1.fq
@PG ID:MarkDuplicates PN: MarkDuplicates VN:1.139 CL:MarkDuplicates 
INPUT=[wt1.bam] OUTPUT=temp.bam METRICS_FILE=metric.txt 
REMOVE_DUPLICATES=false...
@CO [optional]

header

reference 
sequence 
dictionary

read group
program

comment line

https://samtools.github.io/hts-specs/SAMv1.pdf


Alignment files: SAM/BAM/CRAM
The Sequence Alignment/Map (SAM) format is a tab-delimited text format to 
store genomic alignments. Contains two sections.

Alignment section:
11 mandatory fields; always in the same order. 

https://samtools.github.io/hts-specs/SAMv1.pdf

https://samtools.github.io/hts-specs/SAMv1.pdf


Alignment files: SAM/BAM/CRAM
The Sequence Alignment/Map (SAM) format is a tab-delimited text format to 
store genomic alignments. Contains two sections.

Alignment section:
11 mandatory fields; always in the same order. 

https://samtools.github.io/hts-specs/SAMv1.pdfExplain SAM flags: https://broadinstitute.github.io/picard/explain-flags.html

TRUE/FALSE for pre-defined criteria.

https://samtools.github.io/hts-specs/SAMv1.pdf
https://broadinstitute.github.io/picard/explain-flags.html
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Alignment files: SAM/BAM/CRAM
The Sequence Alignment/Map (SAM) format is a tab-delimited text format to 
store genomic alignments. Contains two sections.

Alignment section:
11 mandatory fields; always in the same order. 

0 or * if information is unavailable.

Optional fields encoded as TAG:TYPE:VALUE.
Edit distance, number of total alignments, alignment score, string of mismatching positions, 
read group, information of mate’s alignment...

https://samtools.github.io/hts-specs/SAMv1.pdf

https://samtools.github.io/hts-specs/SAMv1.pdf


Alignment files: SAM/BAM/CRAM
The Sequence Alignment/Map (SAM) format is a tab-delimited text format to 
store genomic alignments. Contains two sections.

Alignment section:
11 mandatory fields; always in the same order. 

0 or * if information is unavailable.

Optional fields encoded as TAG:TYPE:VALUE.
Edit distance, number of total alignments, alignment score, string of mismatching positions, 
read group, information of mate’s alignment...
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K00252:349:HWT3WBBXX:6:2123:2301:12269 99 10 3101416 57 44M106S = 3101416
43 TCCTTCTCCAGTGCGCTTCATCTTTTTGTGTGTAGTCT...

AAFFFJJJJJJJJJJJJJJJJJJJJJJJJJJJFJJFJJ... XA:Z:chr10,-7460382,106S44M,1; MC:Z:107S43M
MD:Z:44 PG:Z:MarkDuplicates RG:Z:10 NM:i:0 MQ:i:57 AS:i:44 XS:i:39

https://samtools.github.io/hts-specs/SAMv1.pdf


Alignment files: SAM/BAM/CRAM
The Sequence Alignment/Map (SAM) format is a tab-delimited text format to 
store genomic alignments. Contains two sections.

Alignment section:
11 mandatory fields; always in the same order. 

0 or * if information is unavailable.

Optional fields encoded as TAG:TYPE:VALUE.
Edit distance, number of total alignments, alignment score, string of mismatching positions, 
read group, information of mate’s alignment...

https://samtools.github.io/hts-specs/SAMv1.pdf

read paired (0x1)
read mapped in proper pair (0x2)
mate reverse strand (0x20)
first in pair (0x40)
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https://samtools.github.io/hts-specs/SAMv1.pdf
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Alignment files: SAM/BAM/CRAM
BAM file: binary (compressed) version of SAM file.

Can be indexed -> allows fast retrieval of specific regions of the genome.
- Requires the BAM file to be sorted by position.
- The index file is named by appending .bai to the bam file name.

CRAM file: further compressed version of a BAM file.
- Uses a reference-based compression.
- Only bases differing from the reference need to be stored.

http://samtools.github.io/hts-specs/SAMv1.pdf

http://samtools.github.io/hts-specs/SAMv1.pdf


Alignment files: SAM/BAM/CRAM
SAM/BAM/CRAM files can be manipulated with SAMtools.

Sorting, merging, indexing and generating alignments in a per-position format.
Rsamtools provides an interface to the 'samtools', 'bcftools', and 'tabix' utilities for manipulating SAM, FASTA, BCF 
and tabix files.

https://bioconductor.org/packages/release/bioc/html/Rsamtools.html

Picard tools is also useful.
Marking duplicate reads, collecting metrics, fix mate information (paired-end 
reads)

http://samtools.sourceforge.net/
http://htslib.org/

https://broadinstitute.github.io/picard/

https://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://samtools.sourceforge.net/
http://htslib.org/
https://broadinstitute.github.io/picard/


Alignment of RNA-seq data
RNA-seq sequencing reads come from spliced mRNAs. 

Their alignment in the genome is interrupted by introns.

Two solutions:
- Map reads to the transcriptome instead of the genome.
- Allow gapped alignments.



Map reads to the transcriptome
Reads in exons that are shared across transcript isoforms will map multiple times.

Requires good annotation.
Any novel genes or isoforms will be lost.



Splice-aware aligners
Map to the genome but allow large gaps.

Intron size ranges from 102 to ~105.

Allows gene and isoform discovery.
Greatly enhanced by paired-end reads.



https://www.ebi.ac.uk/~nf/hts_mappers/

Splice-aware aligners
Map to the genome but allow large gaps.

Intron size ranges from 102 to ~105.

Many different mappers.
Tophat, STAR, GSNAP, subread, MapSplice.

DNA-seq
RNA-seq

https://www.ebi.ac.uk/~nf/hts_mappers/


TopHat

(IUM)

k k
seed

match IUMs

Trapnell et al., TopHat: discovering splice junctions with RNA-Seq, Bioinformatics (2009).
doi: https://doi.org/10.1093/bioinformatics/btp120https://ccb.jhu.edu/software/tophat/index.shtml

https://ccb.jhu.edu/software/tophat/index.shtml


TopHat

(IUM)

k k
seed

match IUMs

Trapnell et al., TopHat: discovering splice junctions with RNA-Seq, Bioinformatics (2009).
doi: https://doi.org/10.1093/bioinformatics/btp120

Kim et al., TopHat2: accurate alignment of transcriptomes 
in the presence of insertions, deletions and gene fusions, 

Genome Biology (2013).
doi: https://doi.org/10.1186/gb-2013-14-4-r36

https://ccb.jhu.edu/software/tophat/index.shtml

https://ccb.jhu.edu/software/tophat/index.shtml


1. Find seeds that align perfectly.
2. Cluster seeds mapping within 

a confined region.
3. Stitch them together.

Using local alignment allowing 
mismatches and gaps.

4. Score all possible alignments 
and chose best.

STAR

Dobin et al., STAR: ultrafast universal RNA-seq aligner, Bioinformatics (2012).
doi: https://doi.org/10.1093/bioinformatics/bts635

MMP = maximal
  mappable
  prefix

https://github.com/alexdobin/STAR

https://github.com/alexdobin/STAR


https://www.ebi.ac.uk/~nf/hts_mappers/

Splice-aware aligners
Map to the genome but allow large gaps.

Intron size ranges from 102 to ~105.

Many different mappers.
Tophat, STAR, GSNAP, subread, MapSplice.

Again, there is no best aligner. 
- Speed.
- Memory usage.
- Accuracy of found exon junctions.

DNA-seq
RNA-seq

https://www.ebi.ac.uk/~nf/hts_mappers/
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High-throughput sequencing experiments



Quantify gene expression

https://htseq.readthedocs.io/en/release_0.9.1/count.html

Take a BAM file with aligned reads and a 
set of features of interest and count the 
number of reads overlapping each feature.

HTSeq, featureCounts, STAR.

Other programs have more complex 
algorithms to try and 

- quantify transcript abundance.
- correct multimapping reads.
- correct known biases.

https://htseq.readthedocs.io/en/release_0.9.1/count.html


Pseudo - aligners
Kallisto, Salmon (Sailfish in a previous version)

● Alignment + quantification 
● Maps k-mers (does not allow for mismatch)

○ Extremely fast and memory efficient 
○ But only transcript quantification, not suitable for 

defining gene structure

Kallisto: Bray et al, Nat Biotechnology 2016 (doi: https://doi.org/10.1038/nbt.3519)
Salmon: Patro et al, Nat Methods 2017 (doi:  10.1038/nmeth.4197)

https://doi.org/10.1038/nbt.3519
https://dx.doi.org/10.1038%2Fnmeth.4197


Negative Binomial (NB) distribution
● RNA-seq data is count data: number of reads mapped to a gene. Discrete, not continuous.
● Poisson distribution is designed for modelling count data. 

○ Sampling from large pool (~million reads per sample), small chance (10-100k counts per gene)
● Poisson assumes 

○ But data clearly shows higher variance
● NB is an extension of Poisson, with an extra 

parameter, called overdispersion (alpha)

○

https://bioramble.wordpress.com/2016/01/30/why-sequencing-data-is-modeled-as-negative-binomial/



Mean - variance relationship 

Because variance is a function of mean (and the other way around)

For downstream analyses we want to apply some form of variance stabilization

E.g.

● defining highly variable genes, 
● performing differential expression analysis

DESeq2 provides two different functions for this, vst and rlog



Spike-in transcripts
● ERCC spike-ins are commonly used to estimate the RNA content of the cell.

○ 92 single-exon transcripts.
○ 250 – 2,000 nucleotides in length.
○ Variable GC content.
○ 106-fold concentration range.

● The same amount is added to every cell.
○ [spike-in] / [endogenous RNA] is an indication of the initial RNA content.

https://www.thermofisher.com/order/catalog/product/4456740
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Batch correction: MNN
Find mutual nearest neighbours (MNNs) in the different batches that represent 
equivalent cell types. Model and remove the technical effects.

Haghverdi et al., Batch effects in single-cell RNA-sequencing data are corrected by matching..., Nat Biotechnol (2018)
doi: https://doi.org/10.1038/nbt.4091
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Batch correction: MNN
Find mutual nearest neighbours (MNNs) in the different batches that represent 
equivalent cell types. Model and remove the technical effects.

Haghverdi et al., Batch effects in single-cell RNA-sequencing data are corrected by matching..., Nat Biotechnol (2018)
doi: https://doi.org/10.1038/nbt.4091



Batch correction: CCA
Canonical correlation analysis 

Butler et al., Integrating single-cell transcriptomic data across different conditions, technologies, and species, Nat Biotechnol (2018)
doi: https://doi.org/10.1038/nbt.4096





Technical noise estimation
One way to estimate technical noise is to spike-in a known concentration of RNA.

● ERCC spike-ins are the most commonly used.
○ 92 single-exon transcripts.
○ 250 – 2,000 nucleotides in length.
○ Variable GC content.
○ 106-fold concentration range.

● The same amount is added to every cell.

● Affected only by technical noise.

Spike-ins also allow estimating 
the RNA content of the cell.https://www.thermofisher.com/order/catalog/product/4456740



ERCC spike-in

To identify the genes that are variable 
across cells, it is necessary to account for 
the technical noise.

Highly variable gene detection

highly variable 
gene (HVG)

endogenous gene

Brennecke et al., Accounting for technical noise in single-cell RNA-seq experiments, Nature Methods (2013)
doi: https://doi.org/10.1038/nmeth.2645

Technical variance can be estimated from 
spike-ins.

HVGs are those that have significantly higher 
variance than expected by noise only.



ERCC spike-in

To identify the genes that are variable across cells, it is necessary to account for 
the technical noise.

Highly variable gene detection

endogenous 
gene

https://bioconductor.org/packages/release/bioc/html/scran.html

A different approach is to fit 
the mean-variance trend 
and subtract that from total 
variance, thus retaining 
only the biological 
component. 
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Doublets
Can be inferred when there are two types of cells.

● male and female.
● mouse and human.
● diverse genetic background.

scran::doubletCells



scran::cyclone

Cell Cycle

Scialdone et al., Computational assignment of cell-cycle stage from single-cell transcriptome data, Methods (2015)
doi: http://doi.org/10.1016/j.ymeth.2015.06.021

Cell cycle phase can be a confounder

● f-scLVM 
(doi.org/10.1186/s13059-017-1334-8)

● CCA (doi.org/10.1038/nbt.4096)

● cyclone (implemented in scran; 
doi.org/10.1016/j.ymeth.2015.06.021)  



UMAP
UMAP (Uniform Manifold Approximation and Projection for Dimension Reduction) 
is another increasingly popular dimensionality reduction / visualization tool, often 
compared to t-SNE

McInnes, L, Healy, J, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction, ArXiv e-prints 1802.03426, 2018

Evaluation of UMAP as an alternative 
to t-SNE for single-cell data
https://www.biorxiv.org/content/early/2
018/04/10/298430

https://www.biorxiv.org/content/early/2018/04/10/298430
https://www.biorxiv.org/content/early/2018/04/10/298430


Cancer single cell rna seq approaches
Clonealign: https://www.biorxiv.org/content/early/2018/06/11/344309 

HoneyBADGER: https://jef.works/HoneyBADGER/

Cardelino: https://github.com/PMBio/cardelino 

CONICS: 
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatic
s/bty316/4979546

https://www.biorxiv.org/content/early/2018/06/11/344309
https://jef.works/HoneyBADGER/
https://github.com/PMBio/cardelino
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/bty316/4979546
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/bty316/4979546


Additional resources
scRNA-seq data workflows:

● http://bioconductor.org/packages/release/workflows/html/simpleSingleCell.html (Lun et al.)

● https://hemberg-lab.github.io/scRNA.seq.course/index.html (Hemberg lab)

● http://hms-dbmi.github.io/scw/ (Harvard single cell workshop)

About t-SNE: https://distill.pub/2016/misread-tsne/

http://bioconductor.org/packages/release/workflows/html/simpleSingleCell.html
https://hemberg-lab.github.io/scRNA.seq.course/index.html
http://hms-dbmi.github.io/scw/
https://distill.pub/2016/misread-tsne/


Additional packages ( for scRNA-seq data analysis)

R/Bioconductor (other than SingleCellExperiment/scater/scran)
● Seurat, MAST
● Monocle, SLICER (Pseudotime / diffusion maps analysis )
● SC3 (clustering)
● edgeR, DESeq2 (differential expression)
● iSEE (visualisation)
● Honeybadger (CNVs)
● BASiCS (differential expression, differential variability)
● Slalom (see f-scLVM, R implementation)
● scDD, Splatter (simulation of scRNA-seq data)

Python
● Scanpy
● f-scLVM (factor single cell latent variable model)
● MOFA (multi omics factor analysis) (has R implementation too)

Comprehensive list of scRNA-seq data analysis tools: https://github.com/seandavi/awesome-single-cell 

https://github.com/seandavi/awesome-single-cell


Link to repository of papers with available data
http://imlspenticton.uzh.ch:3838/conquer/  

http://imlspenticton.uzh.ch:3838/conquer/


Possible datasets for projects (Deng et al.)
Early mouse embryo development (zygote -> late blastocyst)
http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=24408435

http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=24408435


Possible datasets for projects (Petropoulos et al.)

Early human embryo development 
https://www.sciencedirect.com/science/article/pii/S009286741630280X?via%3Dihub 

3 main cell types of 
mature blastocyst:

trophectoderm (TE)

primitive endoderm (PE)

 epiblast (EPI) 

https://www.sciencedirect.com/science/article/pii/S009286741630280X?via%3Dihub
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/trophoblast
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/endoderm
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/epiblast


Possible datasets for projects (Darmanis et al.)

Heterogeneity of glioblastoma tumour cells, and surrounding tissue

https://www.sciencedirect.com/science/article/pii/S2211124717314626?via%3Dihub 

https://www.sciencedirect.com/science/article/pii/S2211124717314626?via%3Dihub


Cellular diversity in the mouse primary visual cortex.
https://www.nature.com/articles/nn.4216

Possible datasets for projects (Tasic et al.)

https://www.nature.com/articles/nn.4216


Possible datasets for projects (MNN - correct)

One of the application of the MNN batch correction method described in the paper 
(https://doi.org/10.1038/nbt.4091 ) is a comparison of pancreatic cells across 
different studies:

1. CEL-seq, Grun et al, 2016
2. CEL-seq2, Muraro et al, 2016
3. Smart-seq2, Lawlor et al. 2017
4. Smart-seq2, Segerstolpe et al, 2016

https://doi.org/10.1038/nbt.4091


Possible datasets for projects (Fan et al.)

https://genome.cshlp.org/content/early/2018/06/13/gr.228080.117.full.pdf+html 

https://github.com/JEFworks/HoneyBADGER 

HoneyBADGER identifies and 
infers the presence of CNV and 
LOH events in single cells and 
reconstructs subclonal 
architecture using allele and 
expression information from 
single-cell RNA-sequencing data.

https://genome.cshlp.org/content/early/2018/06/13/gr.228080.117.full.pdf+html
https://github.com/JEFworks/HoneyBADGER


Possible datasets for projects (Scialdone et al.)

Mouse early embryonic 
development.

https://www.nature.com/articles
/nature18633

https://www.nature.com/articles/nature18633
https://www.nature.com/articles/nature18633


Possible datasets for projects (Halpern et al.)
Single-cell spatial reconstruction reveals global division of labour in the 
mammalian liver
https://www.nature.com/articles/nature21065

https://www.nature.com/articles/nature21065



